3D ‘atlas’ of the human body created

Edinburgh-based visualisation company Holoxica has created the world’s first holographic 3D digital human anatomy atlas, allowing teaching hospitals, medical schools, colleges and research centres a unique view of intricate anatomical structures.

The atlas is a collaboration between Holoxica and Professor Gordon Findlater, Professor of Translation Anatomy at Edinburgh University’s School of Biomedical Sciences.

‘Looks like a book’

The Atlas looks like a book, with physical pages that you can turn, and an integrated light. The light is used to bring out the holographic images which look spectacular as they pop right out of the page in full colour 3D. The hologram is explained on the opposite page using conventional 2D illustrations.

The image data used to create the atlas has been sourced from CT, MRI, ultrasound scans and specially created 3D models to replicate a true three-dimensional understanding of the underlying anatomy.

Atlas provides ‘a fresh perspective’

Dr Javid Khan, Holoxica’s chief executive, said that biomedical science now has access to a tool which gives trainee surgeons and clinicians a fresh perspective into identifying, diagnosing and treating a wide range of conditions like never before.

“Medical students have often struggled with a deeper understanding of the relative positioning of complex anatomical structures, for example, the location of a vein in front of a nerve, which might be located behind a tendon.

“This is the level of pinpoint accuracy and detailed precision which the 3D digital Atlas offers. And since human visual perception is inherently 3D, viewing this information this way aids a better understanding of the underlying anatomy, as well as helping recollection and recall.

“Digital holograms contain a vast amount of information – a square millimetre holds around 24 Mbytes of data, which corresponds to all of the rays of light emitting from every direction to form a 3D image. By comparison, a typical smartphone has less than a thousand bytes of information in the same area.

“The holograms are manufactured using a special holographic printing machine, which is used to make a master hologram. The master is then replicated with no loss of resolution or quality and the 3D Atlas takes shape from there.”

Saving students ‘months of study’

Holoxica hopes the atlas will be used by universities around the world as a teaching aid for first and second year medical and anatomy students. For them, the challenge is understanding the true 3D nature of the underlying anatomy, so solving this issue will save considerable time and effort.

The feedback from students and teachers has been positive, so far, with one Professor of Anatomy saying that this technology would have saved him months of study whilst he was an undergraduate.

Look inside organs

Over the past five years, Holoxica has pioneered techniques for image processing 3D medical data from CT, MRI and Ultrasound scanners into full colour digital 3D Holograms. The company has made significant breakthroughs by creating a number of ‘world first’ digital hologram designs – among them –  a liver from utrasound scans, brain fibres from MRI and lungs from CT scanning.

“Collating all this incredible data and developing the 3D Atlas is a natural progression for us”, says Dr Khan. “Every hologram image is illustrated and annotated on the opposite page of the atlas which contains 11 pages and 13 holograms. All but one of these pages contains a ‘channelling’ feature which enables the viewer to move around the hologram and see directly ‘inside’ organs where different layers are stripped away.”

Holoxica is teaming up with Scion Publishing, a medical publisher, and Zebra Imaging, a manufacturer of digital holograms, to transform the atlas prototype into a commercial product.

Holoxica is also conducting research into a holographic 3D video display, which is being designed to view images in real-time as they are produced by medical scanners. This project has support from the EU Horizon2020 SME Instrument Programme.